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Abstract

The Canadian medical residency match has received considerable attention
in the Canadian medical community as several students go unmatched every
year. Simultaneously, several residency positions go unfilled, largely in Que-
bec, the Francophone province of Canada. The Canadian match is unique
in that positions are designated with a language restriction, a phenomenon
that has not been studied or described priorly in the matching literature.
To study this phenomenon, we develop the model of matching with com-
patibility constraints, where based on a binary characteristic, a subset of
students is incompatible with a subset of hospitals. We show that while
the deferred acceptance algorithm still yields a stable matching, some desir-
able properties from standard two-sided matching are lost. For instance, we
show that if the number of residencies exceeds the number of students, some
students can yet go unmatched. We also investigate a dynamic game where
unmatched positions are re-advertised without language restriction. The
model can be generalized to other instances of the stable marriage problem.
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1 Introduction

The well-known paper by Gale and Shapley “College admission and the
stability of marriage” introduced the deferred acceptance (DA) algorithm as
a way of finding stable matchings in two-sided matching problems [1]. Since
their paper, applications of DA have flourished, the most notable being
the medical residency match. This application was motivated by Roth’s
observation that the National Resident Matching Program (NRMP) in the
United States, which is responsible for allocating medical school graduates
to their post-graduate training (also called a residency), had independently
arrived at the Gale-Shapley DA algorithm [2] [3]. In 1999, the DA algorithm
was modified to include the ability for student couples to apply to match
together. This modified algorithm is called the Roth-Peranson algorithm [4],
and was adopted in many other countries, including Canada and Japan.
Since then, matching theory has remained a ripe field, both theoretically
and practically, with the question of real-world constraints inspiring much
of the matching work in the 21st century. For example, Kamada and Kojima
studied the effects of government quotas on urban and rural doctors in Japan
by investigating the properties of the DA algorithm under these constraints
[5] [6].

In Canada, medical students apply to be matched to postgraduate train-
ing (also called a residency) at a Canadian hospital through the Canadian
Residency Matching Service (CaRMS) [7], which uses a version of the DA al-
gorithm!. The unique constraint that exists is the that some spots are desig-
nated for French-speaking students in order to French services to the public.
This is due to French’s status as the second official language of Canada [8].
While this guarantees equal status for French and English in federal jurispru-
dence, some provinces also give French special status. The province of New
Brunswick, for example, is officially bilingual, while the province of Que-
bec, Canada’s largest province, is officially unilingually French [8]. As well,
French is often taught as a second language in English-speaking provinces
like Ontario [8], while English is also taught in Francophone provinces.

!The CaRMS actually runs four different matches [7]: 1. R-1: This is what graduating
or graduated medical students apply to for their postgraduate training. 2. MSM: Medicine
Subspecialty Match. This is for residents currently in an internal medicine program seeking
to enter subspeciality training. 3. FM/EM: Family Medicine/Emergency Medicine. This
is for residents who are currently in or have completed family medicine training and
wish to pursue further training in emergency medicine. 4. PSM: Pediatric Subspecialty
Match. This is for residents currently in a pediatric residency program who wish to
pursue subspecialty training. In this paper, when we talk about the residency match, we
are referring to the R-1 match.



According to CaRMS data, in the 2019 R-1 match, 103 out of 2984 Cana-
dian medical graduates went unmatched - meaning that 96.5% did indeed
obtain a residency position. While comparing favorably to other residency
matching clearinghouses - for example, in the US, 79.6% of applicants to
the NRMP are matched [9] - much attention in Canada has been drawn to
the issue of unmatched medical residents. The Canadian Medical Assocation
has increasingly been sounding the alarm over the plight of unmatched med-
ical students [10], with the number of unmatched CMGs has been steadily
increasing every year. Other professional organizations, like the Association
of Faculties of Medicine of Canada (AFMC), have been lobbying the govern-
ment as well (provincial governments are responsible for funding residency
positions) [11]. It is worth noting that unmatched medical students cannot
practice medicine, despite nearly a decade in school, and are often left with
little in terms of job prospects [11].

In the Canadian medical literature, much discussion has been ongoing
as to what to do about the CaRMS. Wilson and Bordman, in a commen-
tary in the Canadian Medical Association Journal, the preeminent general
medical journal in Canada, declared that the CaRMS was ”broken”, cit-
ing the fact that 68 graduates went unmatched, while 64 residency po-
sitions were unfilled (including 56 in family medicine in the province of
Quebec) [12]. This commentary attracted much discussion and replies in
the subsequent months, including doctors, deans of medical schools, the
CaRMS itself, and impassioned personal anecdotes from unmatched gradu-
ates [13] [14] [15] [16] [17] [18] [19]. News media have picked up on the plight
of unmatched residents in recent years as well, with considerable coverage
surrounding the tragic suicide of Dr. Robert Chu who went unmatched de-
spite attempting to do so twice [20]. The frustration over the CaRMS has
even spilled into the real world, with professional lobbying groups staging
demonstrations outside the Ontario provincial legislature [11].

Wilson and Bordman’s commentary, as well as match data analysis by
the AFMC, demonstrated there was a seeming disconnect between the two
sides of the matching market. There are more positions than graduates
[11], which at first glance is a favorable situation. Again, comparing with
the United States, there are indeed fewer positions than students in the
NRMP, so the sub-100% match rate is perhaps easily explained away by that
disparity [9]. However, in Canada, there are approximately 102 positions for
every 100 medical graduates. In addition, it seems that unfilled residency
positions tend to largely be in Quebec [12], and Quebec graduates match to
other provinces more than other province’s students match to Quebec [11].
All in all, the plight of the unmatched is one of the most important issues



facing the Canadian medical community today.

Our paper’s contribution is thus twofold. From an economic theory
point of view, we study a novel situation that has not been described in
other well-studied matching markets in the literature. While other recent
papers have focused on introducing real-world constraints into matching
theory (see section 2.2), these papers focus on other constraints, such as
quotas. The situation described above in Canada, where due to language
designations, a subset of students is incompatible with a subset of residency
positions, has not been treated by other papers, to the author’s knowledge.
Secondly, with regards to the real world, given the intense scrutiny around
the Canadian residency match, this paper aims to build a theoretical basis
that can explain how and why the much-derided outcomes described above
have arisen. On this basis, possible solutions to the problems affecting the
CaRMS can be developed. This paper therefore serves as an extension of
the theory of matching as well as an analysis of the CaRMS match.

2 Literature Review

2.1 Beginnings

Gale and Shapley’s seminal paper “College admissions and the stability of
marriage” arguably founded the field of matching theory. In this paper,
they introduced the stable marriage problem. The setup of the problem is
that a population of people are separated into two disjoint partitions (men
and women). How can we best "match” elements of these partitions to one
another taking into account their individual preferences (or, in the marriage
context, how can we best marry the men and women)? Gale and Shapley
introduce the notion of stability as being a desirable property of a matching.
A matching is stable if there does not exist a man and woman who are not
matched to each other but who would prefer to be matched to each other [1].
It is important to realize that both parties must want to be matched to each
other over their current partners. For example, if some man prefers some
other woman over his wife, but that woman is content with her husband,
then this is not an unstable match. In the marriage context, it is clear to
see why instability would be undesirable.

The stable marriage problem was extended to a more general form called
the college admissions problem by Gale and Shapley in the same paper [1]. In
the college admissions problem, the two sets are students and colleges, where
colleges have quotas of at least one student [1]. So, the one-to-one nature
of the stable marriage problem is extended into a many-to-one problem,



as multiple students can be matched to one college. Gale and Shapley
argue that the college admissions problem is essentially equivalent to the
stable marriage problem, as it can be transformed into a one-to-one problem.
Consider if a college has some quota ¢, then we can construct ¢ “dummy”
objects, each representing one seat at the college. Clearly, only one student
can match to one of these seats, so it is a one-to-one matching problem now.
However, there are limits to this intuition [21].

The question in both of these problems is: is it possible to find a stable
match? Gale and Shapley propose the deferred acceptance (DA) algorithm
and prove that DA always yields a stable match [1]. A corollary of this
fact is that a stable match always exists. The first step in DA is to have
each individual draw up a preference ranking of the other set (so, men
rank the women and women rank the men). Rankings should be strict,
such that there is no ambiguity or indifference [1]. It is not necessary for
preferences to be complete. Then, have each man ”propose” to the woman
on the top of his list. If a woman has multiple proposals, she chooses the
one she prefers the most in accordance with her preference list and rejects
the others [1]. Rejected men propose to their next highest ranked woman,
and the same procedure follows. The key caveat is that acceptances are
tenative: if a woman receives a proposal in a later round which she prefers
to someone who she has already said yes to, then she will renege on her
previous suitor and take the newer one instead, hence the name deferred
acceptance [1]. This continues until everyone is matched or there are no
more proposals possible. In the college admissions extension, the algorithm
is largely similar. However, when the students propose to the colleges, the
college chooses the ¢ highest ranked students from among the proposals, and
reject the rest [1]. This reflects the many-to-one nature of the problem.

We described the algorithm with the men proposing or with the stu-
dents proposing. However, it also works if the women propose or the col-
leges propose. This also yields a stable match [1]. Interestingly, it can be
shown that the party that does the proposing yields the best stable match
from their perspective, and the worst stable match from the other party’s
perspective [22]. In other words, in the college admissions problem, the
student-proposing algorithm yields the student-optimal match (the stable
match that is the best for the students), while the college-proposing yields
the college-optimal match. The student-optimal match is also the college-
pessimal match (the worst stable match from the perspective of the colleges),
and the college-optimal match is student-pessimal [22].

Beginning in the 1980’s, applications of matching theory and specifically
DA flourished. One of the most notable examples is the market for medical



residents. This application was motivated by Roth’s observation that the
National Resident Matching Program (NRMP) in the United States, which
is responsible for allocating medical school graduates to their post-graduate
training (also called a residency), had independently arrived at the Gale-
Shapley DA algorithm and had been using it [2] [3]. Roth relays that the
formation of a centralized clearinghouse to handle such allocations was even-
tually formed to settle the chaos that began to emerge in the market. For
example, exploding offers, which are offers that expired after short periods of
time, became more and more prevalent, contributing to inefficient outcomes
as medical students were pressured into making decisions without knowing
the full scope of their possibilities. In the market for medical residents, the
problem is matching medical students to hospitals. At the time, the NRMP
was using hospital-proposing DA [3].

The theoretical aspects of matching theory began to be more robustly
developed and studied during this time. Roth and Sotomayor laid out the
foundational theorems and results of matching theory in their book ”Two
sided matching” [22]. Strategyproofness of DA also began to be studied. It
was proved by Roth and Sotomayor that in the hospital-proposing algorithm,
students have incentive to misrepresent their preferences, and vice versa
for hospitals when running the student-proposing algorithm [22]. Matching
theory attracted considerable interest from economists as well as mathe-
maticians and computer scientists. It was even picked up in the medical
literature. Persistent concerns about the NRMP in the medical literature
were notably summarized by Williams [23], which attracted much interest
and debate in the medical community. This eventually led to a redesign
of the NRMP in 1999: Roth and Peranson modified the old NRMP algo-
rithm, building upon its Gale-Shapley foundations [4] [3]. Some key changes
were making it student-proposing instead of hospital-proposing, so that it
is strategyproof for the students (student have no incentive to misrepresent
their preferences) and allowing students to participate as couples [4]. The
Roth-Peranson algorithm was also adopted in Canada, although the authors
do not know when or how.

2.2 Recent developments

The theory behind matching has continued to see consistent progress. Kelso
and Crawford introduced matching with money, which can be seen as a
model of firms hiring workers [24]. Later, Hatfield and Milgrom unified
and subsumed Kelso-Crawford and Gale-Shapley with their matching with
contracts model [25]. Their model continues to be built upon and placed



upon more rigorous foundations by others [26].

Developments in matching theory tend to occur in tandem with practical
considerations. For this reason, much of the recent literature has focused
on the harder problem of matching with constraints [27]. Observations of
“undesirable” (from a policymaker’s perspective) matches yielded by current
matching algorithms has led to work on possible modifications to the basic
DA algorithm. This is not a new problem. As far back as 1970, McVitie and
Wilson studied the stable marriage problem with unequal sets [28]. Clearly,
by the Pigeonhole Principle [29], some elements will remain unmatched.
McVitie and Wilson proved the Rural Hospital Theorem, which states that
unmatched participants in one stable matching are unmatched in all stable
matchings [28]. This result was later restated by Roth as: in the resident-
hospital matching market, any hospital with empty spots in some stable
matching receives exactly the same set of residents in any stable matching
[30]. The theorem was termed the Rural Hospital Theorem on the basis that
rural hospitals tend to have greater difficulty filling their residency positions
as they are seen as less desirable than urban ones. From these early results,
we can see that the idea of imbalances and disparities arising in matching
markets is not new.

The aforementioned urban-rural disparity was observed in the data in
countries that used centralized clearinghouses for their medical residents,
and some countries became proactive in attempting to manipulate the match-
ing algorithm in order to correct the imbalance. Kamada and Kojima [5] [6]
studied the Japanese medical residency match, which uses student-proposing
DA. In response to public pressure about the lack of rural doctors, the
Japanese government instituted regional quotas based on prefectures (gov-
ernment districts) [5], the idea being to set caps on how many residents
may work in urban prefectures. Kamada and Kojima demonstrated that
such tampering with the DA algorithm results in inefficiency and possible
instability, as well as a lower match rate (fewer doctors overall receive posi-
tions) [5]. They propose a flezible deferred acceptance algorithm that results
in stability and respects regional quotas [6], and show, through simulations,
that while this still yields a lower match rate than normal DA, it does fill
more positions than the Japanese implementation of regional quota DA [6].

The opposite problem of setting floor constraints instead of ceiling con-
straints is seemingly less tractable. Kamada and Kojima point out that floor
constraints are likely much harder to use [31] [32]. For example, if no res-
ident wants to be matched to a specific region, then individual rationality
would be compromised, and even with an individually rational matching,
stability is not guaranteed [31]. Recent work in the computer science litera-



ture has found that checking the mere existence of a feasible matching with
floor constraints is N"P-complete [33]. It remains unclear whether such con-
straints are tractable, and what the definitions of concepts like individual
rationality and stability would be in such situations [33].

3 Model

3.1 Preliminaries

As per Roth and Sotomayor [22], our hospital-residents model is a four-tuple
(H,1,q,P):

e H is a finite set of hospitals.?
e [ is a finite set of students. The sets H and I are disjoint.

e ¢ is a vector of hospital capacities: ¢ for h € H gives the capacity of
hospital h € H.

e P is a list of preferences, as follows:

— For each i € I, P; denotes the preferences of student i over H U
{0}, whence we derive the strict preference relation >;; so, hy >;
ho means that student ¢ strictly prefers hospital h; to ho.

— For each h € H, P, denotes the preferences of hospital h over I U
{0}, whence, as with the students, we derive the strict preference
relation >, which is defined similarly.

A matching is a function p: H U I — P(H U I) such that [22]:

1. u(h) € TUQ such that |u(h)| < gp, for all h € H, meaning no hospital
exceeds its quota,

2. u(i) € H U such that |u(i)| <1 for all i € I, meaning every student
is only matched to one hospital or not at all.

3. i€ u(h) <= u(i) ={h} for all h € H and i € I, meaning a student
is matched to a hospital if and only if the hospital is matched to a set
containing the student.

2Note this is purely semantics. Medical professionals may protest that in Canada it is
actually universities that “host” residency positions, and have affiliations with hospitals
which is where the resident would actually practice. This is true, however we are using
”hospitals” as this is the standard terminology used in the matching literature.
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We call a pair (h,i) € H x I a blocking pair if both of the following
two conditions hold [22]:

2. either i =, i’ for some i € u(h), or, |u(h)| < gn, and h =; ()

From the concept of a blocking pair we can define one of the central
concepts of matching theory: stability. A matching is stable if there do not
exist any blocking pairs [1].

3.2 Deferred acceptance algorithm

The current CaRMS configuration uses the Roth-Peranson algorithm, which
is the student-proposing deferred acceptance algorithm [4]. As well, this is
the algorithm that we will be analyzing in the context of matching residents
to residencies throughout this paper. The student-proposing deferred
acceptance (DA) algorithm is defined as follows [22]:

Step 1. Each student 7 proposes to its most preferred hospital. A hospital
h receiving more than g, proposals shortlists its g most preferred students
according to its preference ranking P, while a hospital h receiving less than
qn, proposals accepts all of its proposals.

Step k. Any student 7 who was rejected at step k— 1 proposes to its next
most preferred hospital. Each hospital h always takes its ¢ top students,
and rejects the others. If a hospital receives a proposal from a student which
it prefers to some student that it shortlisted before step k, it will shortlist
the new proposal and remove the less preferred student from its shortlist.

The algorithm terminates when there are no more rejections.

The algorithm also gives a stable matching if the hospitals propose [22],
although this can be a different matching than the one given by the student-
proposing version. Note that it is possible for there to be stable matchings
other than the one yielded by the DA algorithm: use of DA only implies
existence, not uniqueness, of a stable matching [1].

3.3 Introducing compatibility constraints

We build upon the basic model in section 3.1. Gale and Sotomayor define a
pair (h,7) to be compatible if they are on each other’s preference rankings
[34]. We define a student-hospital pair as incompatible if they do not
appear on each other’s preference rankings: ¢ ¢ P, and h ¢ P;, where P, is
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the preference ranking of h and P; is the preference ranking of 4.3

Our motivation for this model comes from the CaRMS language con-
straints. Namely, every student can be designated as either Anglophone,
Francophone, or both (ie. bilingual). On the other hand, the set of hos-
pitals can be partitioned into two disjoint sets on the basis of language as
well*. A student and hospital are only compatible if they share the same
language, so an English-speaking student will only apply to, and rank, En-
glish hospitals, and French-speaking students will only rank French hospi-
tals. Therefore, bilingual students can apply to both English and French
hospitals®. In turn, hospitals only rank students that apply to them.

We can generalize the idea of such language incompatibilities to any
sort of incompatibility based on some arbitrary binary characteristic. In
general, we define a matching with compatibility constraints problem
as a standard hospital-residents model as per section 3.1 with the following
additional constraints:

e There is a a binary characteristic which can only take one of two values.
Let this set of values be C' = {c1, c2}.

e All students ¢ € I have the characteristic ¢, co, or both. Let the
set of students with characteristic ¢; be denoted as I7, and the set of
students co be denoted I, such that I = I} U Is. Let the intersection
of these sets I1 N I> be denoted I 5.

e There is a partition of hospitals H into two disjoint sets H; and Ho,
which correspond to the characteristics ¢; and cs.

e A student i is compatible with a hospital h if and only if they share

3Note that preferences do not necessarily need to be complete in such matching prob-
lems.

5There is of course the situation that one hospital can have some English positions
and some French positions. However, we can simply imagine this hospital as two different
hospitals, one containing all the English positions, and one containing all the French
positions. Therefore, the set of hospitals can always be partitioned into two disjoint sets:
English and French.

5Note that in reality, it is the hospitals who impose such restrictions - for example,
a hospital restricts its positions to French speakers. It does not necessarily follow that
English-speaking students will not apply to French hospitals. However, Irving has shown
that one can assume without loss of generality that preference rankings are consistent in
two-sided matching problems, meaning that for some hospital h and student i, h € P; if
and only if ¢ € Py, [35]. Therefore, it follows that though these language restrictions are
exogenously imposed by the hospitals, we can safely say that the students also do not
apply to hospitals which would find them unacceptable due to language constraints.

12



Students () Hospitals (H)

T
English (Hg)
English-only (Ig — Ip ) |
| 111
/

Bilingual (Ig,p = Ig U IF)

French-only (Ip — Ig r) French (HF)

shows compatibility

Figure 1: Schematic of matching with compatibility constraints applied to
the Anglophone(E)/Francophone(F’) constraints in the CaRMS

the same characteristic, and they are incompatible if they do not. See
figure 1 for a representation.

We can go back to the example that motivated this construction and ap-
ply this terminology. Our characteristic set is C' = {E, F'}, where F is the
English-speaking characteristic, and F' denotes the French-speaking charac-
teristic. English-only students Ir — Ig r are incompatible with the French
hospitals Hp, while the French-only students Ir — Ig p are incompatible
with the English hospitals Hg. This is shown in figure 1.

4 Results

4.1 Stability

Stability is an important consideration in matching markets. As Roth has
shown, instability often leads to a collapse of matching markets [22]. In order
to demonstrate stability, we can show that the matching with compatibility
constraints is an instance of the stable marriage with incomplete prefer-
ences problem (SMI problem). First introduced by Gale and Sotomayor, an
SMI problem is a one-to-one matching problem where preferences are not
complete [34]. The following lemma will help us to establish stability.

Lemma 4.1. The hospital-residents problem with compatibility constraints
18 an instance of the SMI problem.

Proof. Let S be a finite set of residency seats. For every hospital h € H
with quota g, construct g copies of h, each copy with the same preference
relation as h. Place these copies in S. Rewrite the preference relations
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of every student ¢ € I by replacing every hospital h € P; with a list of
the elements of S that were derived from h. Now, the many-to-one sided
matching problem between I and H has been translated into a one-to-one
matching problem between I and S; i.e. it is a stable marriage problem.
Due to compatibility constraints, preferences are incomplete. Therefore, it
is a stable marriage problem with incomplete preferences. O

This result allows us to immediately establish stability, as follows.

Corollary 4.1. With compatibility constraints, the Gale-Shapley algorithm
yields a stable matching.

Proof. Gale and Sotomayor showed that the Gale-Shapley algorithm yields
a stable matching for the SMI problem [34]. Combining this result with
lemma. 4.1 completes the proof. ]

Therefore, we have shown that even when compatibility constraints are
introduced as per section 3.3, the Gale-Shapley algorithm still finds a stable
matching.

4.2 Existence of unmatched students or unfilled positions

As touched upon in the introduction of the paper, a key issue in the CaRMS
is that some students go unmatched, despite more residency spots than
students. As well, many spots also go unfilled, largely in Quebec. With our
matching with compatibility constraints framework, we can demonstrate
that such a result is theoretically possible. The theorem below as well as its
proof gives us some indication as to how and why unmatched students and
unfilled spots arise simulataneously.

Theorem 4.1 (Unmatched Existence Theorem). In a matching with com-
patibility constraints problem where the number of students is equal to the
total number of residency spots - i.e. |I| = Y ynem qn - then it is possible
that some students will not be matched or hospital positions will be empty.

Proof. 1t suffices to show an example where this happens. Consider the
following example, in the language of language compatibility, with four stu-
dents i1,12,1%3,%4, where i; and io are English-only students, ¢3 is a bilin-
gual student, and i4 is a French-only student. Let there be four hospitals
h1, ha, h3, ha, each with quota g5 = 1, so that there are in total Y v,cpr qn = 4
hospital residency spots. Let the preference rankings of the hospitals and
students be as follows:

14



i1 hy = ho h12i3>-i1>-i2

io : ho = hq ho :ig > 11 > i3
i3 :h1 > hg > ho > hy hs : i3 > 14
ig i hg = hy hy : i3 > 14

Now, we run the student-proposing deferred acceptance algorithm, in
rounds:

1. Student i1 proposes to hospital h1. Student i5 proposes to hospital hs.
Student i3 proposes to hospital h;. Student i4 proposes to hospital hs.
Hospital h; accepts student ¢3 and rejects ¢;. Hospital hy accepts
student i5. And, hospital hg accepts i4.

2. Student i1 proposes to hs.
Hospital hs rejects 7.

The final matching that the algorithm yields is:

Students Hospitals

English

- - h3

English-only
Bilingual

French-only French
h 4

means "matched”

means ”unmatched”

Student i1, who is an English-only speaker, is not matched to a hospital,
while the Francophone hospital h4 has its spot empty simultaneously.  [J

Remark 1. Note that the Francophone hospital spot is unfilled in the above
example, which is analogous to how the bulk of unfilled residency spots are
i Quebec in the CaRMS.

Remark 2. Observe that if the constraints in the above example are lifted,
then all positions and students would be matched.

Theorem 4.1 contrasts with the well-known result that when there are
as many students as residency positions, and preferences are complete, then
there are no unmatched students and no unfilled spots [22]. The proof
of theorem 4.1 shows how introducing compatibility constraints leads this
result to break down, even though in the example given students preferences’

15



are complete over compatible hospitals, and vice versa (this is as complete
as preferences can be under compatibility constraints).

We can look further at the case where there are more residency positions
than students. For example, in the CaRMS, there are about 102 positions for
every 100 students [11]. Remarkably, we can demonstrate that the problem
of unmatched students persists.

Corollary 4.2. In matching with compatibility constraints where the number
of residency positions is greater than the number of students, it is possible
for students to go unmatched or hospital positions to be unfilled or both.

Proof. Let us build on the example given in the proof of theorem 4.1 by
adding a fifth hospital hs (with one seat), which is Francophone, with pref-
erence rankings hs : i4 > i3, and updating the Francophone students’ pref-
erence rankings to i3 : hy = hg = hg = hy > hs and i4 : hy > hy > hs.
It is clear to see that both of these students i3 and i4 are already matched
to other hospitals during the progression of the algorithm, and so will have
no need to propose to hs, so that hs is unfilled. The student 7; remains
unmatched as well. O

Remark 3. In the above example, consider instead if we added a fifth
hospital hs (with one seat) which is Anglophone, with preference rankings
hs : i1 = i9 > i3. Let us update the Anglophone student’s preferences to
1 : h >h2>h5, 19 : hy = >h5 andigzhl >h2>h5. Ifwemm
the student-proposing algorithm, student i1, after being rejected by hy and
ho, will propose to hs, and will be accepted by it. The other students’ as-
signments remain the same as before, so that all students have been given
positions. However, hospital hy still remains unfilled.

4.3 Establishing an /-saturating stable matching

An [-saturating matching is defined as a matching in which, for all 4 € I,
w(i) # 0 [36]. So, an I-saturating stable matching is such a matching that
is also stable. Remark 3 gives some indication as to how we can vary the
number of hospitals in order to match every student. When we added an
Anglophone hospital, the number of Anglophone positions (three) was equiv-
alent to the number of English speakers (i1, i2, and the bilingual student
iz). We can generalize this fact.

First, however, it is necessary to define a new term. With compatibility
constraints, preferences are necessarily incomplete. However, we can define
a weaker form of preference completeness. If every student has complete
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preferences over their respective compatible hospitals, and vice versa every
hospital has complete preferences over their respective compatible students,
then we can say that preferences are compatibility-wise complete. This
is as complete as preferences can be under compatibility constraints. With
this definition, we can show the following theorem.

Theorem 4.2. In matching with compatibility constraints where preferences
are compatibility-wise complete, if the number of Anglophone positions equals
the number of English-speakers |Ig| = > ypep, qn and the number of Fran-
cophone positions equals the number of French-speakers |Ip| = > wheHy s
then the Gale-Shapley algorithm yields an I-saturating stable matching.

Proof. Assume for contradiction that there is a student i who does not have
a position after running the DA algorithm. Let the number of students with
the same characteristic as ¢, including ¢, be n. By assumption, the number of
positions with 4’s characteristic is also n. As preferences are compatibility-
wise complete, the student ¢ must have been rejected from every compatible
hospital. Per the algorithm, a student is only rejected by a hospital if they
are less preferable than some other student. Rejection can only happen if a
hospital’s shortlist is already full or a the student is removed to free up a
position for a more preferable student. This means that every compatible
hospital that rejected student ¢ has filled its quota, meaning that n positions
are filled. However, only n — 1 students are matched (every student with i’s
characteristic except for 7). By the Pigeonhole Principle [29], some student
must have two positions. This is a contradiction. ]

Theorem 4.2 implies that, for example, if we have 5 students (2 English-
only, 2 French-only, and 1 bilingual), then in order to ensure that every
student is matched (assuming compatibility-wise completeness), we would
actually need 6 positions (3 Anglophone and 3 Francophone) instead of, as
we might think at first glance, 5 positions for 5 students. We can generalize
this observation.

Corollary 4.3. Assuming compatibility-wise completeness, the number of
total positions required to guarantee every student a match is |Ig| + |IF|.

Proof. 1t follows from theorem 4.2, as we simply sum the required number of
Anglophone positions | Ig| and the required number of Francophone positions
IF|- O

SNote that English-speakers Iz includes English-only speakers and bilingual speakers,
and French-speakers Ir includes French-only speakers and bilingual speakers.
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Corollary 4.4. If IgNIg # ), then the required number of positions to guar-
antee every student a match under compatibility-wise complete preferences
is greater than the number of students I.7

Proof. Observe that |I| = |Ig|+|Ip|—|IeNIp| = |Ig|+|Ir| = |I|+|IeNIF|.
As |Ig N Ip| > 0, it follows that [Ig| + [Ip| > |I]. O

The results of the above two corollaries shows the inefficiency introduced
by compatibility constraints in matching markets. When such constraints
are not present, having > v,cpy qn = |I| suffices. However, when they are
present, it necessitates more positions than |I|. As well, observe that with
corollary 4.4, as the number of positions required is greater than the num-
ber of students, inevitably some positions will remain unfilled. This means
that there is inherently a trade-off for the policymaker deciding how many
residency positions to fund: setting the number of residency positions in
accordance with the lower bound of corollary 4.3 would mean that every
student is matched, but would also mean some positions will be unfilled,
which could be a waste of resources. The policymaker must therefore con-
sider these two opposing goals: matching every student, or filling every
residency position.

4.4 A dynamic game extension

A policy maker might look at the unmatched students and positions and
think about relaxing the assumptions we have made thus far about the
language constraints of hospital positions. Consider an extension of the
hospital-residents with compatibility constraints problem where there is a
second match in which unfilled positions are re-advertised as “bilingual”
with certain requirements. For example, an unfilled Francophone position
might be re-advertised as open to all students regardless of language, on the
condition that non-Francophones enrol in French classes concurrently along-
side their residency. Then, unmatched students apply to these positions, and
we use the Gale-Shapley DA algorithm once again. We may also allow pre-
viously matched students to forfeit their positions and re-participate in the
match. Or, we may exogenously restrict them from participating, and only

"In the special case where there are no bilingual students, so that Iz NIz = @, then the
required number of positions to guarantee every student a position under compatibility-
wise complete preferences is equal to the number of students |I|, which follows from
corollary 4.3. Observe that when Ig N Ir = ), we effectively have two separate standard
hospital-residents problems: one betwen [r and Hg, and one between Ir and Hp.
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allow the previously unmatched students can participate. Interestingly, we
can show that the latter is simply a special case of the former.

A useful way of handling this game is to construct an SMI instance as
per lemma 4.1: construct, for each hospital h € H, g copies with the same
preference relation P, and place these copies in a finite set of residency
seats S. As well, rewrite the preference relations for every student i € I by
replacing every hospital A with its copies in S. We have reduced the problem
to a one-to-one matching problem. With these preference relations, we can
run the first match. After this run, we can update the preference relations
in order to run the second match as follows.

First, identify which students wish to give up their seats in order to
participate in the match. Vacate their seats and also open them up for
applications. For all students ¢ € I who wish to keep their seat, simply
rewrite their preference relation to be i : (i) = 0, where u(i) is their
assigned seat from the first match. Conversely, for all residency seats s € S
that are not given up, rewrite their preference relations as s : u(s) = (). Next,
update the preference relations of the students without positions (whether
they were unmatched a priori or chose to give up their seat) as they now
apply to the newly open positions. Similarly, update the preference relations
for these open positions. This is an instance of SMI between the sets I and S.
Note that the way we have constructed it guarantees that those students and
positions that choose to not participate in the second match will necessarly
remain with their assignment from the first match.

Theorem 4.3. In the second match, where previously unfilled positions
are re-advertised as unrestricted, the Gale-Shapley algorithm yields a sta-
ble matching.

Proof. Use the construction above to reduce the problem to smi problem
instance. By Gale and Sotomayor, Gale-Shapley yields a stable matching
[34]. O

We can see how the case where exogenously restricting the second match
only to previously unmatched students is a special case of the above game,
as it is merely the case that all students with positions are treated as per
the construction above. Therefore, the following corollary is implied.

Corollary 4.5. When students who were previously matched are ezxoge-
nously restricted from participating in the second match, the Gale-Shapley
algorithm yields a stable matching.
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Proof. Use the same construction as in the proof of theorem 4.3, but assign
to all previously matched students i the preference relation i : (i) > (), and
all previously filled seats s the preference relation s : u(s) > (. This is a
special case of theorem 4.3, and so Gale-Shapley yields a stable matching.

O

5 Discussion and Conclusion

In this paper we developed the matching with compatibility constraints
model, where a binary characteristic causes a subset of students to be incom-
patible with a subset of hospitals, in order to investigate the phenomenon of
language restrictions in the Canadian medical residency match. This is, to
the authors knowledge, the first paper to investigate this unique feature of
the Canadian residency match, and use it to explain its present problems.
Notably, we investigated theoretically how this could lead to the current is-
sue in the CaRMS of unmatched students and unfilled positions. We showed
that even when there are more residencies than students, as is the case in
Canada, it is not guaranteed that every student is able to obtain a position.

We defined a weaker form of preference completeness, called compatibility-
wise completeness, which is as complete as preferences can be under compati-
bility constraints. We then showed that when we assume compatibiility-wise
completeness (ex. all English-speaking students apply to all English residen-
cies), then we can guarantee every student obtaining a position by having
the number of English positions equal to the number of English-speaking
students and the number of French positions equal to the number of French-
speaking students. Interestingly, the total required number of positions to
guarantee this is greater than the number of students - which contrasts with
the result in standard matching models that under complete preference rela-
tions, having positions equal in number to the students guarantees a match
for everyone. Unfortunately, even given this guarantee, we cannot assauge
the problem of unfilled residency positions.

The real-world applicability of this prescription may be limited as pref-
erences in the real world are likely not compatibility-wise complete. There
are significant logistical hurdles that applicants to residency positions must
pass through for each application, including reference letters and interviews.
Due to this, medical students in the CaRMS do not rank all hospitals with
whom they are compatible. Taking into this account, the number of re-
quired residency positions to guarantee that every student matches is likely
larger, albeit by an unknown amount, than what would be required under
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compatibility-wise complete preferences.

Lastly, we investigated an extension into a dynamic game where un-
filled positions are re-advertised with relaxed restrictions in a second match.
Whether this second match is only open to unmatched students, or previ-
ously matched students can renege on their assignment and participate it,
Gale-Shapley yields a stable matching.

Ultimately, our model has implications for the CaRMS and analyzing
its current issues that have received so much attention in the medical com-
munity. It’s generalized formulation in terms of arbitrary binary character-
istics allows it to be applied to any variant of one-to-one and many-to-one
matching situations. For example, in a marriage market, it could be used to
analyze the effect of the existence of religious preferences. Future theoretical
work could take this framework in numerous directions. As well, it would
be interesting to see how the framework applied empirically to, for instance,
the study of the CaRMS. It would be interesting to see how varying the
number of Anglophone and Francophone positions affects the match rate by
simulating the CaRMS. We leave it to future theoreticians and empiricists
to build upon the results laid out in this paper.
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